IMAGE SEGMENTATION USING SUB-MARKOV RANDOM WALK ALGORITHM WITH PRIOR LABEL

SHAIK RUMAMA ANJUM (M.Tech.)
Mr. ADI NARAYANA (Associate professor)

1,2Sri Mittapalli College of Engineering & Technology, Guntur, Andhra Pradesh 522019 INDIA
1shaik.rumanaajaaz@gmail.com 2adinarayanamtech@gmail.com

Abstract

Segmentation is typically the first step in object identification in an image. It may also be used in compression to compress different areas, segments of an image, at different compression qualities. So, for segmentation we are developed a novel technique known as sub-Markov random walk (subRW) algorithm with label prior for seeded image segmentation, which is similar to traditional random walk having auxiliary nodes added in it. Under this auxiliary nodes consideration we gave uniqueness of proposed work than existing systems. Different methods analyzed and shown that our method is more efficient. The uniqueness will be nothing but adding or changing the auxiliary nodes in segmentation algorithm. We face segmentation problem in existing system if the image is having very thin and elongated parts. To solve this type of problem we implemented proposed work. Matlab simulation results proved that our proposed subRW is giving better results compare to all other existing RW algorithms for both synthetic and natural images.

1. INTRODUCTION

Image segmentation will play a major role in image processing. So practically image segmentation algorithm must provide four qualities. Those are 1) fast computation 2) fast editing 3) producing an arbitrary segmentation with enough interaction 4) intuitive segmentations. By using the random walk algorithm we can get all the above desired qualities [1]. By using some methods we can solve the problem of sparse, symmetric positive definite system of linear equations. The random walk algorithm may give good results by taking the solution of previous one as the initialization of an iterative matrix solver. The algorithm formation on a graph allows the application of the algorithm to surface meshes or space-variant images [2], [3].

In K-away image segmentation user defined seeds are given to indicate the regions of the image belonging to K objects. Every seed indicates the location with user defined label. In previously established paper [4] [5] random walker first consider the seed points which exactly equals the solution to the Dirichlet problem [6] and the seed point is fixed to unity remaining are set to zero. To see the more information refers this [7]. Fully discrete calculus [8] development allowed for connection between random walks on graphs [9] and discrete potential theory [10] The solution for dirichlet problem on an arbitrary graph is electric circuits with resistors which should represent the inverse of the weights i.e. conductance and boundary conditions which should represent the voltage sources and fixing the electric potentials at boundary nodes.

The image segmentation work mainly focused on building of possible image models. The parameters for these models are developed based on these algorithms [11]. The synthesis and analysis of image textures mainly depends on frame models [12]. The desired behavior of an algorithm first established in a different line of computer vision research. And also PDE or other physical process also did. In this process the image content is viewed by the metric properties.

The random walk approach requires some characteristics in interactive segmentation algorithm those are 1) 1) Location of weak (or missing)
boundaries, 2) Noise robustness, 3) Ability to identify multiple objects simultaneously, 4) Fast computation (and editing), 5) Avoidance of small/trivial solutions (i.e., an avoidance of a “small cut” phenomenon).

In this paper we propose a sub Markov random walk (subRW). It will have four RW-based algorithms: RW, RWR, LRW and PARW. To solve the twig problem it is extended by adding label prior. In the properties of subMarkov random walk first step is build a subRW framework for image segmentation. First it will leave a graph G from a node i having the probability of $q_{0}(i)$ and then it will move to the other adjacent nodes in G having the probability of $1-q_{0}(i)$. This random walk is changed to a Markov transition probability ($\sum q(i,j) = 1$) in an expanded graph G_{e}. This G_{e} is constructed by adding auxiliary staying nodes connected with seeds and unseeded nodes into graph G are connected with auxiliary killing nodes.

2. AUUNIFYING VIEW OF SUBRW

By using the sub-Markov transition probability (subRW) random walk algorithm is proposed for the interactive multi-labeled image segmentation and the analysis was done between the previous and proposed popular RW algorithms such as RW, RWR, LRW, and PARW.

In this approach, user should indicate as multi-labeled seeds on foreground objects and background objects.

A. The Sub-Markov Random

In the random-walk the variables represented, weighted graph G, labeled nodes VM, and unlabeled nodes VU, and VU \cup VM = V for the seeded segmentation subRW algorithm is used. To get a graph G and Expanded graph G_{e} two types of auxiliary nodes are added.

B. The Optimization of SubRW:

subRW algorithm mainly depends on random walks, it can be taken as a general optimization problem. By using the optimization, we can employ the general vision application.

C. Relations with Other Well-Known RW Algorithms:

The proposed results are compared with the conventional popular algorithms to see the performance. RW, RWR, LRW, and PAPW.

1) Relations with RW:

For the segmentation, Grady [20] proposed random walk algorithm with a Markov transition probability. This can be taken as a special case of subRW. In this algorithm it places a random walker at each unlabeled node then calculates all the labeled nodes. This calculation is not practical.

2) Relations with RWR:

In this for each node assigned a steady state probability and it develops a seeds.

3) Relations with LRW:

In [40] super pixel segmentation has been done by using the lazy random-walk algorithm and multi labeled segmentation problem is removed by using this algorithm. In this random walker will stay in the present position and walk out with an arbitrary edge.
4) Relations with PARW:

Ranking, clustering, and classification were done by using the partially absorbing random walks (PARWs). The PARW starts at current node \(i \) with the probability \(\lambda_i \) and walk out of it having a random edge with probability \(1-\lambda_i \).

3. LITERATURE SURVEY

For the segmentation of medical images so many approaches have been proposed. These approaches generally grouped into two main categories. Those are semi-automatic and fully automatic method. Random walker algorithm will come under as semi-automatic method. It is proposed by grady2 and other methods based on graph-cuts (e.g., see FunkaLeaet al.3), for the segmentation of regions user should provide seed points. By using all these methods the final segmentation and results are obtained. When a large batch of images is there for segmentation these methods are practically not used. In automatic methods, it does not require any manual interaction. So many conventional methods have been proposed in the past years. Those methods based on clustering (e.g., Sikka et al.4), level-sets (e.g., Liu et al.5) and active contours (e.g., Gao et al.6). In the recent years many proposals have done for the development of atlas-based methods, in this for the segmentation of one new image one or several pre-labeled templates used. In these methods the methods will be based on least square support vector machines (e.g., Kasiriet al.7), intensity classification (e.g., Sdika et al.8), Markov random fields (e.g., Bauer et al.9), decision fusion (e.g., Rohlfing et al.10) and graph cuts (e.g., Lotjonen et al.11). to get more information about atlas-based segmentation, refer Cabezas et.al.1

For the segmentation of medical images many histogram-based methods have been proposed because of their greater efficiency. For the segmentation of brain MR volumes a simple method based on Otsu’s thresholding technique 13 by Shan et al.14 proposed. For instance, to segment the liver tissues Seot al.15 proposed a method i.e. tailthreshold the histogram of intensities. And for the segmentation of brain images Nakibet al.16 proposed in this 2D histograms (intensities and their spatial correspondences). Lastly to segment the brain MRI images Dou et al.17 fuzzy-clustering algorithm on the histograms used. In this paper also histogram is used to get a fast automatic segmentation of images. Little parameter tuning and class membership probabilities are additional benefits.

4. PROPOSED METHOD

An object with twigs is usually consists of two parts: one is main branch and the other one is twig part. Actually, the twig part and the main part are similar to each other. There are so many RW-based algorithm have been proposed to omit the twig part. In this paper, some appropriate user-specified scribbles on the main object have included enough information for segmenting out the twig part. To achieve this, we need to add label prior to the scribbles into the sub RW which are used to segment out the twig part efficiently.

A. Added Label Prior

In an object usually two types of nodes are available. One is seeded node and the other one is unseeded node. Prior will work only at seeded node and there will not be prior at unseeded node. All the new nodes \(V \) present in an object are labeled as new label prior, which as less exact than user scribbles but can be used for unseeded nodes. As shown in figure, a label \(l_k \) has intensity distribution \(H_k \) for each and every node. Each prior node is connected with all nodes in \(V \) and weight \(w_{lh} \) of an edge between a prior node \(h \) and a node \(v \) is proportional to probability density \(u_k^l \), i.e., \(w_{lh} \propto u_k^l \).
Then the transition probability is expressed as

\[
\bar{q}(i,j) = \begin{cases}
 c_i if i \in V, j \in (\Delta) \cup S_m \\
 (1 - c_i) \frac{\lambda u_i^k}{d_i + \gamma_{g_i}}, if i \in V, j = h_k \\
 (1 - c_i) \frac{w_{ij}}{d_i + \gamma_{g_i}}, if j \in V \cup S_m \cup H_m(2) \\
 1 \quad i = j \in \{\Delta\} \\
 0 \quad otherwise
\end{cases}
\]

Hence, a transition probability over a graph with prior \(\bar{\theta}\), the probability \(r_{im}^{-1k}\) the random walker from one node position reaches to the m-th staying node \(S_m^i\) with label \(l_k\) or prior node \(h_k\), is expressed as

\[
r_{im}^{-1k} = (1 - c_i) \sum_{j} \frac{w_{ij}r_{im}^{-1k}}{d_i + \gamma_{g_i}} + (1 - c_i) \frac{\lambda u_i^k}{d_i + \gamma_{g_i}} + c_i b_{im}^{-1k}(3)
\]

The present prior node \(h_k\) is seen as a new staying node with label \(l_k\). So, the reaching probability of \(h_k\) is to be considered by the vector as

\[
r_{im}^{-1k} = (1 - D_c) \bar{r}_{im}^{-1k} + (1 - D_c) (1 - D_c) \bar{u}^k + D_c b_{im}^{-1k}
\]

\[
= (1 - (1 - D_c) \bar{p})^{-1} (1 - D_c) \bar{u}^k + D_c b_{im}^{-1k} \quad (4)
\]

\[
= \bar{E}^{-1}((1 - D_c) \bar{u}^k + D_c b_{im}^{-1k})
\]

The modified vector notation \(\bar{r}_{im}^{-1k}\) can be formulated as

\[
\bar{r}_{im}^{-1k} = \frac{1}{z_k} \bar{E}^{-1}((1 - D_c) \bar{u}^k + \frac{1}{m_k} D_c b_{im}^{-1k}) \quad (5)
\]

The final labeling (segmentation) result with a label prior is obtained as follows:

\[
\bar{R} = \arg \max_{l_k} \bar{r}_{im}^{-1k} \quad (6)
\]

Where \(\bar{R}\) represents the final node for each pixel of an image.

B. The Optimization Explanation

Similar to the subRW, we can also give the optimization explanation for the subRW with label prior. Suppose \(\forall i, 0 < c_i < 1\), then the objective function is as follows:

\[
\mathcal{O}^{1k} = \frac{1}{2} \sum_{i=1}^{N} \sum_{l=1}^{N} w_{ij} (r_{im}^{-1k} - r_{jm}^{-1k})^2 + \frac{1}{2} \sum_{i=1}^{N} \frac{(d_i + \gamma_{g_i})c_i}{(1 - c_i)} \sum_{l=1}^{N} w_{ij} (r_{im}^{-1k} - r_{jm}^{-1k})^2 + \frac{1}{2} \sum_{l=1}^{N} \lambda u_i^k (r_{im}^{-1k} - 1)^2 + \frac{1}{2} \sum_{l=1}^{N} \lambda u_l^k r_{im}^{-1k}^2
\]

\[
\mathcal{O}^{1k} = \sum_{l=1}^{N} (\frac{1}{2} \sum_{i=1}^{N} \sum_{l=1}^{N} w_{ij} (r_{im}^{-1k} - r_{jm}^{-1k})^2 + \frac{1}{2} \sum_{i=1}^{N} \frac{(d_i + \gamma_{g_i})c_i}{(1 - c_i)} \sum_{l=1}^{N} w_{ij} (r_{im}^{-1k} - r_{jm}^{-1k})^2 + \frac{1}{2} \sum_{l=1}^{N} \lambda u_i^k (r_{im}^{-1k} - 1)^2 + \frac{1}{2} \sum_{l=1}^{N} \lambda u_l^k r_{im}^{-1k}^2)
\]

\[u_l^k \quad (7)
\]
Algorithm 1 segmentation by subRW with label prior

Input: an image $V(v_i)$ and K kinds of user scribbles $V_M=\{V^{l_1}, V^{l_2}, \ldots, V^{l_k}\}$, the parameters $D_c = \text{diag}(c_1, c_2, \ldots, c_N) \lambda \gamma$.

Output: The segmentation result \tilde{R}_i for each pixel:

1: Obtain the indicating vectors $b^{l_k}, k=1: K$ of scribbles:

2: Define an adjacency matrix $W=\left[w_{ij}\right]_{N \times N}$ with neighbors graph structure by (1);

3: Generate the GMMs with five components from all scribbles and then get the probability density u^k_i:

4: Scale probability: $u^k_i \leftarrow \max(100 + \log(u^k_i), 10^{-10})$;

5: if $\gamma = 1$ then

6: obtain coarse segmentation result $CR_i = \arg \max_k u^k_i$;

7: get the candidate vector cr^k from CR_i;

8: reset the prior vector $u^k_i \leftarrow u^k \otimes cr^k$;

9: end if

10: Set $g_i \leftarrow g^k_i$, where $u^k_i \leftarrow g^k_i$ u^k_i;

11: Compute the transition probability matrix \bar{P} and the vector \bar{u}^k by (37) and (38);

12: solve linear equations: $\bar{P} \tilde{r}^{lk} = (I - D_c) \bar{u}^k + \frac{1}{M_k} D_c b^{l_k}$;

13: Normalize the reaching probabilities: $\tilde{P}^{lk} \leftarrow \frac{1}{Z_k} \tilde{r}^{lk}$;

14: Obtain segmentation result $\tilde{R}_i = \arg \max_k \tilde{r}_i^{lk}$;
The vector formation of above equation is given as

\[
\tilde{\theta}^{ik} = \frac{1}{2} r_m^{ikT} (D - W) \tilde{r}_m^{ik} + \frac{1}{2} \left(r_m^{ik} - b_m^{ik} \right)^T (I - D_c)^{-1} (D + \times D_y) D_c \left(r_m^{ik} - b_m^{ik} \right) + \frac{\lambda}{2} \sum_{m=1}^{K} D_u^{k} \left(r_m^{ik} - e \right)^T + \frac{\lambda}{2} \sum_{m=1}^{K} r_m^{ikT} D_f r_m^{ik} \quad (8)
\]

By taking the partial derivative of \(r_m^{ik} \), we have

\[
\frac{\partial \tilde{\theta}^{ik}}{\partial r_m^{ik}} = (D - W) r_m^{ik} + D_\eta^{-1} D_a D_c \left(r_m^{ik} - b_m^{ik} \right)
\]

\[
+ \lambda \left(D_u^{k} r_m^{ik} + \sum_{m=1, m \neq k}^{K} D_f^{k} r_m^{ik} - u^k \right)
\]

\[
= (D_a - W) r_m^{ik} + D_\eta^{-1} D_a D_c \left(r_m^{ik} - b_m^{ik} \right) - \lambda u^k
\]

\[
= D_\eta^{-1} D_a \left[(D_\eta + D_c - D_a^{-1} D_\eta W) r_m^{ik} - D_c b_m^{ik} - D_a^{-1} D_\eta \lambda u^k \right]
\]

\[
= D_\eta^{-1} D_a \left[\tilde{E}^{ik} - (D_\eta \tilde{u}^k + D_c b_m^{ik}) \right]
\]

\[
= (D_a - W) r_m^{ik} + D_\eta^{-1} D_a D_c \left(r_m^{ik} - b_m^{ik} \right) - \lambda u^k
\]

From (41), we can find that it comprises of three segments. The initial two segments are the smooth term and the unary term, which are like the parts in (10). The last component relates to the label prior. By limiting this component, the achieving likelihood \(r_m^{ik} \) will be reliable with the label prior.

C. Noise Reduction

Adding the label prior to each node of a pixel may produce some noise. This noise may produce some distortions. To avoid this one of the solution is to decrease parameter \(\lambda \). If the value of \(\lambda \) is too small, the twig part may get lost. We need to some other strategies to reduce noise like combining label prior value for each node. Coarse segmentation is achieved to avoid lose of twig part. Coarse segmentation is represented as

\[
CR_l = \arg \max_k u^k \quad (10)
\]
As we know there will be much noise in the coarse segmentation, it mostly does not connected with the main part of an object. So, we can choose the connected regions with seeds from the coarse segmentation as the candidate regions. Next we will every label prior into these candidate regions, which helps to keep the prior information of twig part as well as noise get removed. Furthermore, the candidate regions are dilated to add more prior information into the boundary regions. Since the contrast of the prior information near boundaries is high, it will help to find correct boundaries.

5. SIMULATION RESULTS

Figure 3. the image is shown in two different color spaces

Figure 4. separation of both background and foreground regions

Figure 5. shows the resultant image using sub markov random model
We have conferred a completely unique framework supported the subMarkov random walk for interactive seeded image segmentation in this work. This framework are often explained as a traditional random walker that walks on the graph by adding some new auxiliary nodes, that makes our framework simply interpreted and a lot of versatile. Below this framework, we unify the well-known RW-based algorithms that satisfy the subMarkov property and build bridges to create it simple to remodel the findings between them. What is more, we've got designed a novel subRW with label before solve the twigs segmentation problems by adding previous nodes into our framework. The experimental results have shown that our algorithmic outperforms the progressive RW-based algorithms. This also proves that it's practicable to style a replacement subRW algorithmic program by adding new auxiliary nodes into our framework. In the future, we'll extend our algorithmic program to a lot of applications, such as center line detection at 3D medical pictures and classification.

In the extension work, some of the parameters of an algorithm have been changed to reduce the noise of an image as well as to extract the particular region of an image with perfect edges and flexibility.
REFERENCES

