
 INTERNATIONAL JOURNAL
 OF PROFESSIONAL ENGINEERING STUDIES Volume VIII /Issue 5 / JUN 2017

IJPRES

Abstract— In today’s world the amount of data being

generated is growing exponentially. A number of these

data are structured, semi-structured or unstructured.

This poses an excellent challenge once these

information are to be analyzed as a result of

conventional data processing techniques are not suited

to handling such information. Map reduce may be a

programming model and an associated implementation

for process and generating massive information sets. A

Map reduce workload usually contains a group of jobs,

every of that consists of multiple map tasks followed by

multiple reduce tasks. This technique proposes of

algorithms to optimize the Makespan and also the total

completion time for an offline MapReduce workload.

Our algorithms concentrate on the task ordering

optimization for a MapReduce workload and that we

will perform optimization of Makespan and total

completion for a MapReduce workload. Our work is

focuses on resolution the time efficiency issues still as

memory utilization problem. By using MK_TCT_JR

algorithm made the result that are up to, 90 to fix

things than MK_JR. Our algorithm can improve the

system performance in terms of Makepan and total

completion time.

Index Terms -- Mapreduce, Hadoop, Scheduling

Algorithm, Job Ordering, Makespan, Total Completion

Time, Resource Allocation Mapreduce Slot Allocation;

I. INTRODUCTION

A MapReduce job consists of a group of map and reduce

tasks, wherever reduce tasks are performed when the

map tasks. Hadoop, an open source implementation of

MapReduce, has been deployed in giant clusters

containing thousands of machines by companies like

Amazon and Facebook. Make span and total completion

time are two key performance metrics. Generally, build

span is defined because the period of time since the

beginning of the primary job until the completion of the

last job for a group of jobs. It considers the computation

time of jobs and is usually used to measure the

performance and utilization efficiency of a system. In

distinction, total completion time is referred to because

the ad of completed time periods for all jobs since the

beginning of the primary job. It’s a generalized build

span with queuing time (i.e., waiting time) included. We

are able to use into measure the satisfaction to the

system from one job’s perspective through dividing the

entire completion time by the quantity of jobs (i.e.,

average completion time). Therefore, during this paper,

we tend to aim to optimize these two metrics Objectives:

to enhance the performance for MapReduce workloads

with job ordering and slot configuration optimization

approaches. Recommend slot configuration algorithms

for total completion time and make span. Execute

exhaustive experiments to authenticate the effectiveness

of projected algorithms and theoretical results. In recent

Minimizing the MakeSpan of Multiple MapReduce Jobs
through Job Ordering Technique

1EDUKOJU HAREESH, 2N. NAVEEN KUMAR

1M.Tech Student, Department of CSE, JNTU, Kukatpally, Hyderabad.

2Assistant Professor, Department of CSE, JNTU, Kukatpally, Hyderabad.

Gurmeet
Typewritten Text
47

 INTERNATIONAL JOURNAL
 OF PROFESSIONAL ENGINEERING STUDIES Volume VIII /Issue 5 / JUN 2017

IJPRES

years, MapReduce has become the parallel computing

paradigm of alternative for large-scale data processing in

clusters and data centers. A MapReduce job consists of a

group of map and reduce tasks, wherever reduce tasks

are performed when the map tasks. Hadoop, an open

source implementation of MapReduce, has been

deployed in giant clusters containing thousands of

machines by companies such as Yahoo! and Facebook to

support execution for big jobs submitted from multiple

users (i.e MapReduce workloads). During a Hadoop

cluster, the calculate resources are abstracted into map

(or reduce) slots, that are basic calculate units and

statically organized by administrator earlier. attributable

to 1) the slot allocation constraint assumption that map

slots will only be allotted to map tasks and reduce slots

will only be allotted to reduce tasks, and 2) the overall

execution constraints that map tasks are executed before

reduce tasks, we have two observations: (I). there are

significantly totally different performance and system

utilization for a MapReduce workload below different

job execution orders and map/reduce slots

configurations, and (II). Even below the optimal job

submission order as well because the optimal

map/reduce slots configuration, there may be several idle

reduce (or map) slots whereas map (or reduce) slots are

not enough throughout the computation, that adversely

affects the system utilization and performance. In our

work, we tend to address the matter of a way to improve

the employment and performance of MapReduce cluster

without any previous data or data (e.g., the coming time

of MapReduce jobs, the execution time for map or

reduce tasks) concerning MapReduce jobs. Our

resolution is novel and straightforward: we tend to break

the previous initial assumption of slot allocation

constraint to allow one. Slots are generic and might be

utilized by map and reduce tasks. 2. Map tasks can

prefer to use map slots and likewise reduce tasks prefer

to use reduce slots. In alternative words, once there are

insufficient map slots, the map tasks can assign all the

map slots and so borrow unused reduce slots. Similarly,

reduce tasks will use unallocated map slots if the

quantity of reduce tasks is greater than the quantity of

reduce slots. During this paper, we are going to focus

specifically on Hadoop fair scheduler (HFS). This can be

as a result of the group exploitation and concert for the

complete MapReduce jobs below HFS are abundant

poorer (or a lot of serious) than that below FIFO

scheduler. However it is value mentioning that our

resolution may be used for FIFO scheduler as well.

II. RELATED WORK

In literature, there was research study on performance

optimization of Hadoop MapReduce jobs. An essential

approach for upgrading the performance of a

MapReduce job is dynamic slot configuration and job

scheduling. J. Dean et al. 2008 discussed MapReduce

programming model. The MapReduce model performs

operations victimization the map and reduces functions.

Map function gets input from user documents. It

generates intermediate key/value for reducing function.

It additional processes intermediate key/value pairs and

provide output key/value pairs. At associate entry level,

MapReduce programming model provided the best data

processing results. Currently, it must method the

massive volume of data. Thus it provides some

consequences whereas processing and generating

information sets. It takes a lot of execution time for task

initialization, task coordination, and task scheduling.

Parallel processing might cause inefficient task

execution and low resource utilization. J. Polo et al.

calculated the map and reduce task completion time

dynamically and update it each minute throughout job

execution. Task scheduling policy was based on the

priority of each job. Priority was estimated based on the

concurrent allocation of jobs. The dynamic scheduler is

pre-emptive. It affects resource allocation of low priority

Gurmeet
Typewritten Text
48

 INTERNATIONAL JOURNAL
 OF PROFESSIONAL ENGINEERING STUDIES Volume VIII /Issue 5 / JUN 2017

IJPRES

jobs. J. Wolf et al. implemented flexible scheduling

allocation theme with Hadoop fair scheduler. A primary

concern is to optimize scheduling theory metrics, time

interval, make span, stretch, and service Level

Agreement. They projected penalty operate for

measurement of job completion time, epoch scheduling

for partitioning time, moldable scheduling for job

parallelization, and malleable scheduling for various

interval parallelization. Verma et al. projected point in

time aware scheduler, referred to as SLO scheduler. The

SLO scheduler takes choices of job ordering and slot

allocation. This scheduler’s primary duty is to maximize

the utility operate by implementing the Earliest deadline

initial algorithms. It measures how many numbers of

slots needed for scheduling the slots dynamically with a

selected job deadline. B. Sharma et al. projected a world

resource manager for the job tracker and an area

resource manager for the task tracker. A world resource

manager operate is to manage every MapReduce task. It

processes resource needs and resource assignments for

every task. a local resource manager’s duty is to identify

every task. It examines resource usage and task

completion time of the task. It deals with detecting

bottlenecks with resources and resource contention.

Apache Hadoop released next generation MapReduce,

referred to as YARN. It replaces MRv1 fixed slot

configuration. YARN deals with CPU cores and memory

requirements. It splits the job tracker into two

components; they are resource managements and job

scheduling.

III. FRAME WORK

To maximize the slot utilization for MapReduce and

balance the performance exchange between a single job

and a batch of jobs with fair scheduling and improving

the performance of MapReduce cluster in Hadoop. Goals

and Objective the objective is to utilize the slots in

MapReduce cluster. The slot utilization remains a

challenging task because of fairness and resource needs.

It is truthful once all pools are allotted with a similar

quantity of resources. The resources needs between the

map slot and reduce slot are typically different. This is

as a result of the map task and reduce task are often

exhibit completely different execution patterns. We tend

to review job ordering optimization. To model

performance of system, make span and total completion

time is used. Total time taken to complete job is

calculated. We tend to describe the dynamic slot

allocation framework that produces the optimized job

order and additionally prove its approximation ratio. We

tend to additionally describe the job order which

provides the worst, i.e., longest make-span, which is

used for derivation of the boundary make-span of a

workload. We tend to propose an alternative technique

known as dynamic hadoop slot allocation by keeping the

slot based model. It relaxes the slot allotment

constriction to allow slots to be reallocated to either map

or reduce tasks depending on their needs. Second, the

speculative execution will tackle the straggler problem

that is shown to boost the performance for single job

however at the expense of the clustering. Within the

view, we tend to propose speculative execution

performance balancing to balance performance trade-off

between single job and a batch of jobs. Third, delay

scheduling has shown to enhance the data vicinity

however at the cost of fairness.

Figure 1: Proposed System Architecture

Finally, by merge these procedures together, we tend to

form step by step slot distribution scheme referred to as

Gurmeet
Typewritten Text
49

 INTERNATIONAL JOURNAL
 OF PROFESSIONAL ENGINEERING STUDIES Volume VIII /Issue 5 / JUN 2017

IJPRES

Dynamic MR that can improve performance of map

reduce workloads well. Programming and Resource

Allocation Optimization: Compared to the present

development, our projected technique is appropriate for

all types of jobs. Echinoderm framework will modify the

hadoop configuration mechanically for the MapReduce

jobs. By using sampling technique and cost based model

we are able to maximize the use of hadoop cluster.

However still we are able to improve the performance of

this method by maximizing the use of map and by

reducing slots. Projected a way for MapReduce multi job

workloads based on source conscious indoctrination

technique this method concentrate on improving

resource utilization by increasing the abstraction of

existing task slot to job solve the inefficiency downside

of the Hadoop MRv1 within the perspective of resource

management. Instead of using slot, it manages resources

into containers. The Map and reduce operation are

performed on any instrumentality. Speculative Execution

Optimization: In MapReduce we need task programming

strategy for managing issues such as laggard problem for

one job, that include Speculative execution is such an

important task programming strategy. The speculative

execution algorithm speculates the task by prioritizing

and pays attention on heterogeneous environments. To

run, choosing the fast nodes and also the speculative

tasks are covered over, this speculative execution

algorithm may be a longest approximate time to end

(LATE) and also the prioritizing of task is needed for

speculation. Guo et al. proposes a BASE or Benefit

Aware Speculative Execution rule that appraise the

probable benefit of the exploratory tasks and also the

unnecessary runs are eliminated. This BASE algorithm

of the evaluating and elimination will improve the

performance for LATE. The speculative execution

strategy magnifies its focus primarily on saving cluster

computing resource. Maximum cost Performance (MCP)

may be a new speculative execution algorithm projected

by the projected for fixing the problem that was affecting

the performance of the previous speculative execution

ways. We tend to projected speculative Execution

improvement strategy that balances the tradeoffs

between a single job and a group of jobs.

IV. EXPERIMENTAL RESULTS

In our experiments, we are taking the three types of jobs

like word count, sorting and creating inverted index after

that run the Un Optimized means run the normal map

reduce concept it shows the Job ID like serial number

Job Name like Word Count, Sorting and Creating

Inverted Index, Processing Type like Un Optimized,

Processing Time, Mapper Time and Reducer Time the

total time taken by Mapper and reducer to process the

job is represented as processing time in ms and their

individual timings in ns after that apply the MK_JR,

MK_TCT_JR and MK_SF_JR algorithms based on that

we are maximize the slot utilization for Multiple

MapReduce Jobs through Job Ordering Technique. In

the below chart we can observe that difference between

the lengths of UnOptimized, MK_JR, MK_TCT_JR,

MK_SF_JR and MK_TCT_SF_JR Algorithms

We can observe that MakeSpan Processing Time chart in

that difference between the lengths of UnOptimized,

MK_JR, MK_TCT_JR, MK_SF_JR and

MK_TCT_SF_JR Algorithms. The difference will be

shown in the sense of Processing Time. Through our

implementation we can improve the performance of the

system at lower cost then compare to current methods as

well as minimize the Makespan and the total completion

Gurmeet
Typewritten Text
50

 INTERNATIONAL JOURNAL
 OF PROFESSIONAL ENGINEERING STUDIES Volume VIII /Issue 5 / JUN 2017

IJPRES

time and job ordering optimization for a MapReduce

workload under a given map/reduce slot configuration

through job ordering technique.

V.CONCLUSION

This paper focuses on the job ordering and map/reduce

slot configuration problems for MapReduce production

workloads that run periodically during a data warehouse,

wherever the typical execution time of map/reduce tasks

for a MapReduce job can be profiled from the history

run, under the FIFO scheduling during a Hadoop cluster.

Two performance metrics are considered, i.e., Makespan

and total completion time. We tend to initial specialize

in the Makespan. We tend to propose job ordering

optimization algorithm and map/reduce slot

configuration optimization algorithm. We tend to

observe that the entire completion time are often poor

subject to obtaining the optimal Makespan, therefore, we

tend to additional propose a brand new greedy job

ordering algorithm and a map/reduce slot configuration

algorithm to minimize the Makespan and total

completion time together. The theoretical analysis is

additionally given for our projected heuristic algorithms,

as well as approximation ratio, higher and lower bounds

on Makespan. Finally, we tend to conduct extensive

experiments to validate the effectiveness of our projected

algorithms and their theoretical results.

REFERENCES

[1] A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata,

“Column oriented storage techniques for map reduce,”

Proc. VLDB Endowment, vol. 4, 419–429, Apr. 2011.

[2] J. Gupta, A. Hariri, and C. Potts, “Scheduling a two-

stage hybrid flow shop with parallel machines at the first

stage,” Ann. Oper. Res., vol. 69, pp. 171–191, 1997.

[3] H. Herodotou and S. Babu, “Profiling, what-if analysis,

and cost based optimization of map reduce programs,”

Proc. Endowment, vol. 4, no. 11, pp. 1111–1122, 2011.

[4] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.

B. Cetin, and S. Babu, “Starfish: A self-tuning system

for big data analytics,” in Proc. 5th Conf. Innovative

Data Syst. Res., 2011, pp. 261–272.

[5] S. Ibrahim, H. Jin, L. Lu, B. He, and S. Wu, “Adaptive

disk I/O scheduling for map reduce in virtualized

environment,” in Proc. Int. Conf. Parallel Process., Sep.

2011, pp. 335–344.

[6] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The

performance of map reduce: An in-depth study,” Proc.

VLDB Endowment, vol. 3, pp. 472–483, Sep. 2010.

[7] S. M. Johnson, “Optimal two- and three-stage

production schedules with setup times included,” Naval

Res. Logistics Quart., vol. 1, no. 1, pp. 61–68, 1954.

[8] H. Karloff, S. Suri, and S. Vassilvitskii, “A model of

computation for map reduces,” in Proc. ACM-SIAM

Symp. Discrete Algorithms, 2010, pp. 938–948.

[9] G. J. Kyparisis and C. Koulamas, “A note on makespan

minimization in two-stage flexible flow shops with

uniform machines,” vol. 175, pp. 1321–1327, 2006.

[10] J. Leung, L. Kelly, and J. H. Anderson, Handbook of

Scheduling: Algorithms, Models, and Performance

Analysis. Boca Raton, FL, USA: CRC Press, 2004.

[11] B. Moseley, A. Dasgupta, R. Kumar, and T.Sarlos, “On

scheduling in map-reduce and flow-shops,” in Proc. 23rd

Annu. ACM Symp. Parallelism Algorithms Archit.,

2011, pp. 289–298.

[12] P.-F. Dutot, L. Eyraud, G. Mounie, and D. Trystram,

“Bi-criteria algorithm for scheduling jobs on cluster

platforms,” in Proc. Archit., 2004, pp. 125–132.

[13] J. Dittrich, J.-A.-Quiane Ruiz, A. Jindal, Y. Kargin, V.

Setty, and J. Schad, “adoop++: Making a yellow

elephant run like a cheetah,” Proc. VLDB Endowment,

vol. 3, nos, pp. 515–529, Sep. 2010.

[14] J. N. D. Gupta, “Two-stage, hybrid flowshop scheduling

problem,” Res. Soc., vol. 39, no. 4, pp. 359–364, 1988.

Gurmeet
Typewritten Text
51

