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Abstract— In today’s world the amount of data being 

generated is growing exponentially. A number of these 

data are structured, semi-structured or unstructured. 

This poses an excellent challenge once these 

information are to be analyzed as a result of 

conventional data processing techniques are not suited 

to handling such information. Map reduce may be a 

programming model and an associated implementation 

for process and generating massive information sets. A 

Map reduce workload usually contains a group of jobs, 

every of that consists of multiple map tasks followed by 

multiple reduce tasks. This technique proposes of 

algorithms to optimize the Makespan and also the total 

completion time for an offline MapReduce workload. 

Our algorithms concentrate on the task ordering 

optimization for a MapReduce workload and that we 

will perform optimization of Makespan and total 

completion for a MapReduce workload. Our work is 

focuses on resolution the time efficiency issues still as 

memory utilization problem. By using MK_TCT_JR 

algorithm made the result that are up to, 90 to fix 

things than MK_JR. Our algorithm can improve the 

system performance in terms of Makepan and total 

completion time. 

Index Terms -- Mapreduce, Hadoop, Scheduling 

Algorithm, Job Ordering, Makespan, Total Completion 

Time, Resource Allocation Mapreduce Slot Allocation; 

I. INTRODUCTION 

A MapReduce job consists of a group of map and reduce 

tasks, wherever reduce tasks are performed when the 

map tasks. Hadoop, an open source implementation of 

MapReduce, has been deployed in giant clusters 

containing thousands of machines by companies like 

Amazon and Facebook. Make span and total completion 

time are two key performance metrics. Generally, build 

span is defined because the period of time since the 

beginning of the primary job until the completion of the 

last job for a group of jobs. It considers the computation 

time of jobs and is usually used to measure the 

performance and utilization efficiency of a system. In 

distinction, total completion time is referred to because 

the ad of completed time periods for all jobs since the 

beginning of the primary job. It’s a generalized build 

span with queuing time (i.e., waiting time) included. We 

are able to use into measure the satisfaction to the 

system from one job’s perspective through dividing the 

entire completion time by the quantity of jobs (i.e., 

average completion time). Therefore, during this paper, 

we tend to aim to optimize these two metrics Objectives: 

to enhance the performance for MapReduce workloads 

with job ordering and slot configuration optimization 

approaches. Recommend slot configuration algorithms 

for total completion time and make span. Execute 

exhaustive experiments to authenticate the effectiveness 

of projected algorithms and theoretical results. In recent 
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years, MapReduce has become the parallel computing 

paradigm of alternative for large-scale data processing in 

clusters and data centers. A MapReduce job consists of a 

group of map and reduce tasks, wherever reduce tasks 

are performed when the map tasks. Hadoop, an open 

source implementation of MapReduce, has been 

deployed in giant clusters containing thousands of 

machines by companies such as Yahoo! and Facebook to 

support execution for big jobs submitted from multiple 

users (i.e MapReduce workloads). During a Hadoop 

cluster, the calculate resources are abstracted into map 

(or reduce) slots, that are basic calculate units and 

statically organized by administrator earlier. attributable 

to 1) the slot allocation constraint assumption that map 

slots will only be allotted to map tasks and reduce slots 

will only be allotted to reduce tasks, and 2) the overall 

execution constraints that map tasks are executed before 

reduce tasks, we have two observations: (I). there are 

significantly totally different performance and system 

utilization for a MapReduce workload below different 

job execution orders and map/reduce slots 

configurations, and (II). Even below the optimal job 

submission order as well because the optimal 

map/reduce slots configuration, there may be several idle 

reduce (or map) slots whereas map (or reduce) slots are 

not enough throughout the computation, that adversely 

affects the system utilization and performance. In our 

work, we tend to address the matter of a way to improve 

the employment and performance of MapReduce cluster 

without any previous data or data (e.g., the coming time 

of MapReduce jobs, the execution time for map or 

reduce tasks) concerning MapReduce jobs. Our 

resolution is novel and straightforward: we tend to break 

the previous initial assumption of slot allocation 

constraint to allow one. Slots are generic and might be 

utilized by map and reduce tasks. 2. Map tasks can 

prefer to use map slots and likewise reduce tasks prefer 

to use reduce slots. In alternative words, once there are 

insufficient map slots, the map tasks can assign all the 

map slots and so borrow unused reduce slots. Similarly, 

reduce tasks will use unallocated map slots if the 

quantity of reduce tasks is greater than the quantity of 

reduce slots. During this paper, we are going to focus 

specifically on Hadoop fair scheduler (HFS). This can be 

as a result of the group exploitation and concert for the 

complete MapReduce jobs below HFS are abundant 

poorer (or a lot of serious) than that below FIFO 

scheduler. However it is value mentioning that our 

resolution may be used for FIFO scheduler as well. 

 

II. RELATED WORK 

In literature, there was research study on performance 

optimization of Hadoop MapReduce jobs. An essential 

approach for upgrading the performance of a 

MapReduce job is dynamic slot configuration and job 

scheduling. J. Dean et al. 2008 discussed MapReduce 

programming model. The MapReduce model performs 

operations victimization the map and reduces functions. 

Map function gets input from user documents. It 

generates intermediate key/value for reducing function. 

It additional processes intermediate key/value pairs and 

provide output key/value pairs. At associate entry level, 

MapReduce programming model provided the best data 

processing results. Currently, it must method the 

massive volume of data. Thus it provides some 

consequences whereas processing and generating 

information sets. It takes a lot of execution time for task 

initialization, task coordination, and task scheduling. 

Parallel processing might cause inefficient task 

execution and low resource utilization. J. Polo et al. 

calculated the map and reduce task completion time 

dynamically and update it each minute throughout job 

execution. Task scheduling policy was based on the 

priority of each job. Priority was estimated based on the 

concurrent allocation of jobs. The dynamic scheduler is 

pre-emptive. It affects resource allocation of low priority 
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jobs. J. Wolf et al. implemented flexible scheduling 

allocation theme with Hadoop fair scheduler. A primary 

concern is to optimize scheduling theory metrics, time 

interval, make span, stretch, and service Level 

Agreement. They projected penalty operate for 

measurement of job completion time, epoch scheduling 

for partitioning time, moldable scheduling for job 

parallelization, and malleable scheduling for various 

interval parallelization. Verma et al. projected point in 

time aware scheduler, referred to as SLO scheduler. The 

SLO scheduler takes choices of job ordering and slot 

allocation. This scheduler’s primary duty is to maximize 

the utility operate by implementing the Earliest deadline 

initial algorithms. It measures how many numbers of 

slots needed for scheduling the slots dynamically with a 

selected job deadline. B. Sharma et al. projected a world 

resource manager for the job tracker and an area 

resource manager for the task tracker. A world resource 

manager operate is to manage every MapReduce task. It 

processes resource needs and resource assignments for 

every task. a local resource manager’s duty is to identify 

every task. It examines resource usage and task 

completion time of the task. It deals with detecting 

bottlenecks with resources and resource contention. 

Apache Hadoop released next generation MapReduce, 

referred to as YARN. It replaces MRv1 fixed slot 

configuration. YARN deals with CPU cores and memory 

requirements. It splits the job tracker into two 

components; they are resource managements and job 

scheduling. 

III. FRAME WORK 

To maximize the slot utilization for MapReduce and 

balance the performance exchange between a single job 

and a batch of jobs with fair scheduling and improving 

the performance of MapReduce cluster in Hadoop. Goals 

and Objective the objective is to utilize the slots in 

MapReduce cluster. The slot utilization remains a 

challenging task because of fairness and resource needs. 

It is truthful once all pools are allotted with a similar 

quantity of resources. The resources needs between the 

map slot and reduce slot are typically different. This is 

as a result of the map task and reduce task are often 

exhibit completely different execution patterns. We tend 

to review job ordering optimization. To model 

performance of system, make span and total completion 

time is used. Total time taken to complete job is 

calculated. We tend to describe the dynamic slot 

allocation framework that produces the optimized job 

order and additionally prove its approximation ratio. We 

tend to additionally describe the job order which 

provides the worst, i.e., longest make-span, which is 

used for derivation of the boundary make-span of a 

workload. We tend to propose an alternative technique 

known as dynamic hadoop slot allocation by keeping the 

slot based model. It relaxes the slot allotment 

constriction to allow slots to be reallocated to either map 

or reduce tasks depending on their needs. Second, the 

speculative execution will tackle the straggler problem 

that is shown to boost the performance for single job 

however at the expense of the clustering. Within the 

view, we tend to propose speculative execution 

performance balancing to balance performance trade-off 

between single job and a batch of jobs. Third, delay 

scheduling has shown to enhance the data vicinity 

however at the cost of fairness.  

 
Figure 1: Proposed System Architecture 

Finally, by merge these procedures together, we tend to 

form step by step slot distribution scheme referred to as 
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Dynamic MR that can improve performance of map 

reduce workloads well. Programming and Resource 

Allocation Optimization: Compared to the present 

development, our projected technique is appropriate for 

all types of jobs. Echinoderm framework will modify the 

hadoop configuration mechanically for the MapReduce 

jobs. By using sampling technique and cost based model 

we are able to maximize the use of hadoop cluster. 

However still we are able to improve the performance of 

this method by maximizing the use of map and by 

reducing slots. Projected a way for MapReduce multi job 

workloads based on source conscious indoctrination 

technique this method concentrate on improving 

resource utilization by increasing the abstraction of 

existing task slot to job solve the inefficiency downside 

of the Hadoop MRv1 within the perspective of resource 

management. Instead of using slot, it manages resources 

into containers. The Map and reduce operation are 

performed on any instrumentality. Speculative Execution 

Optimization: In MapReduce we need task programming 

strategy for managing issues such as laggard problem for 

one job, that include Speculative execution is such an 

important task programming strategy. The speculative 

execution algorithm speculates the task by prioritizing 

and pays attention on heterogeneous environments. To 

run, choosing the fast nodes and also the speculative 

tasks are covered over, this speculative execution 

algorithm may be a longest approximate time to end 

(LATE) and also the prioritizing of task is needed for 

speculation. Guo et al. proposes a BASE or Benefit 

Aware Speculative Execution rule that appraise the 

probable benefit of the exploratory tasks and also the 

unnecessary runs are eliminated. This BASE algorithm 

of the evaluating and elimination will improve the 

performance for LATE. The speculative execution 

strategy magnifies its focus primarily on saving cluster 

computing resource. Maximum cost Performance (MCP) 

may be a new speculative execution algorithm projected 

by the projected for fixing the problem that was affecting 

the performance of the previous speculative execution 

ways. We tend to projected speculative Execution 

improvement strategy that balances the tradeoffs 

between a single job and a group of jobs. 

 

IV. EXPERIMENTAL RESULTS 

In our experiments, we are taking the three types of jobs 

like word count, sorting and creating inverted index after 

that run the Un Optimized means run the normal map 

reduce concept it shows the Job ID like serial number 

Job Name like Word Count, Sorting and Creating 

Inverted Index, Processing Type like Un Optimized, 

Processing Time, Mapper Time and Reducer Time the 

total time taken by Mapper and reducer to process the 

job is represented as processing time in ms and their 

individual timings in ns after that apply the MK_JR, 

MK_TCT_JR and MK_SF_JR algorithms based on that 

we are maximize the slot utilization for Multiple 

MapReduce Jobs through Job Ordering Technique. In 

the below chart we can observe that difference between 

the lengths of UnOptimized, MK_JR, MK_TCT_JR, 

MK_SF_JR and MK_TCT_SF_JR Algorithms  

 
We can observe that MakeSpan Processing Time chart in 

that difference between the lengths of UnOptimized, 

MK_JR, MK_TCT_JR, MK_SF_JR and 

MK_TCT_SF_JR Algorithms. The difference will be 

shown in the sense of Processing Time. Through our 

implementation we can improve the performance of the 

system at lower cost then compare to current methods as 

well as minimize the Makespan and the total completion 
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time and job ordering optimization for a MapReduce 

workload under a given map/reduce slot configuration 

through job ordering technique. 

 

V.CONCLUSION 

This paper focuses on the job ordering and map/reduce 

slot configuration problems for MapReduce production 

workloads that run periodically during a data warehouse, 

wherever the typical execution time of map/reduce tasks 

for a MapReduce job can be profiled from the history 

run, under the FIFO scheduling during a Hadoop cluster. 

Two performance metrics are considered, i.e., Makespan 

and total completion time. We tend to initial specialize 

in the Makespan. We tend to propose job ordering 

optimization algorithm and map/reduce slot 

configuration optimization algorithm. We tend to 

observe that the entire completion time are often poor 

subject to obtaining the optimal Makespan, therefore, we 

tend to additional propose a brand new greedy job 

ordering algorithm and a map/reduce slot configuration 

algorithm to minimize the Makespan and total 

completion time together. The theoretical analysis is 

additionally given for our projected heuristic algorithms, 

as well as approximation ratio, higher and lower bounds 

on Makespan. Finally, we tend to conduct extensive 

experiments to validate the effectiveness of our projected 

algorithms and their theoretical results. 
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