SIMULATION OF CASCADED MULTI LEVEL INVERTER AS A STATCOM BY USING FUZZY LOGIC CONTROLLER FOR HIGH POWER APPLICATIONS

1. E.NARASIMHULU, Assistant Professor
Rajeev Gandhi Memorial College of Engg&Tech.
JNTUA, Andhra Pradesh, India
narasimha206366@gmail.com

3.P.SESI KIRAN, Assistant Professor
Rajeev Gandhi Memorial College of Engg&Tech.
JNTUA, Andhra Pradesh, India
Sesikiran1980@gmail.com

2. D.NARENDRA BABU, PG Scholar
Rajeev Gandhi memorial college of engg&tech,
JNTUA, Andhra Pradesh, India
dudekulanarendrababu@gmail.com

ABSTRACT- In this paper, a simple static var compensating scheme using a cascaded multilevel inverter-based STATCOM is proposed. The topology consists of two standard inverters are connected in cascade through open-end windings of a three-phase transformer. The dc-link voltages of the inverters are regulated at different levels to obtain multilevel operation. A fuzzy logic control scheme is proposed for the controlling operation of STATCOM. The simulation study is carried out in MATLAB/SIMULINK to predict the performance of the proposed scheme under balanced and unbalanced supply-voltage conditions. Further, stability behavior of the topology is investigated. The dynamic model is developed and transfer functions are derived. The system behavior is analyzed for various operating conditions.

Index Terms— DC-link voltage balance, multilevel inverter, power quality (PQ), static compensator (STATCOM).

I. INTRODUCTION

Static VAR compensators control only one of the three important parameters (Voltage, impedance, phase angle) determining the power flow in the AC power systems viz. the amplitude of voltage at selected terminals of the transmission line. It has long been realized that an all solid-state or advanced, static VAR compensator, which is true equivalent of ideal synchronous condenser, is technically feasible with the use of gate turn-off (GTO) thyristors.

The application of (FACTS) controllers, such as flexible ac transmission systems as static compensator (STATCOM) and static synchronous series compensator (SSSC), is increasing in power systems. This is due to their ability to stabilize the transmission systems and to improve power quality (PQ) in distribution systems. STATCOM is popularly accepted as a reliable reactive power controller replacing conventional var compensators, such as the thyristor-switched capacitor (TSC) and thyristor-controlled reactor (TCR). This device provides reactive power compensation, active power oscillation damping, flicker attenuation, voltage regulation, etc.

Generally, in high-power applications, var compensation is achieved using multilevel inverters. These inverters consist of a large number of dc sources which are usually realized by capacitors. Hence, the converters draw a small amount of active power to maintain dc voltage of capacitors and to compensate the losses in the converter. However, due to mismatch in conduction and switching losses of the switching devices, the capacitors voltages are unbalanced. Balancing these voltages is a major research challenge in multilevel inverters. Various control schemes using different topologies are reported in. Among the three conventional multilevel inverter topologies, cascade H-bridge is the most popular for static var compensation. However, the aforementioned topology requires a large number of dc capacitors. The control of individual dc-link voltage of the capacitors is difficult.

Static var compensation by cascading conventional multilevel/two level inverters is an attractive solution for high-power applications. The topology consists of standard multilevel/three level inverters connected in cascade through open-end windings of a three-phase transformer. Such topologies are popular in high-power drives. One of the advantages of this topology is that by maintaining asymmetric voltages at the dc links of the inverters, the number of levels in the output voltage waveform can be increased. This improves PQ. Therefore, overall control is simple compared to conventional multilevel inverters.

Various var compensation schemes based on this topology are reported in. In, a three-level inverter and twolevel inverter are connected on either side of the transformer low-voltage winding. The dc-link
voltage are maintained by separate converters. In three-level operation is obtained by using standard two-level inverters. The dc-link voltage balance between the inverters is affected by the reactive power supplied to the grid.

In this paper, a static var compensation scheme is proposed for a cascaded two-level inverter-based multilevel inverter. The topology uses standard two-level inverters to achieve multilevel operation. The dc-link voltages of the inverters are regulated at asymmetrical levels to obtain four-level operation. To verify the efficacy of the proposed control strategy, the simulation study is carried out for balanced and unbalanced supply voltage conditions. A laboratory prototype is also developed to validate the simulation results.

From the detailed simulation and experimentation by the authors, it is found that the dc-link voltages of two inverters collapse for certain operating conditions when there is a sudden change in reference current. In order to investigate the behavior of the converter, the complete dynamic model of the system is developed from the equivalent circuit. The model is linearized and transfer functions are derived. Using the transfer functions, system behavior is analyzed for different operating conditions.

In this paper, we are presenting the work carried out in designing the Fuzzy logic controller for switching operation of STATCOM, a member of FACTS family. A simple control strategy of STATCOM is adopted where the measurement of rms current at the source terminal is needed. Then the performance of conventional PI controller and fuzzy logic controller (FLC) are investigated. Simulation results show that Total Harmonic Distortion (THD) in source current is drastically reduced fuzzy controller is included in the STATCOM control circuit. Simulation work has been done using MATLAB/SIMULINK software.

This paper is organized as follows: The proposed control scheme is presented in Section II. Stability analysis of the converter is discussed in Section III. Simulation and experimental results are presented in Sections IV and V, respectively.

II.MULTI-LEVELINVERTER-BASED STATCOM

Fig. 1 shows the power system model considered in this paper. Fig. 2 shows the circuit topology of the cascaded two-level inverter-based multilevel STATCOM using standard two-level inverters. The inverters are connected on the low-voltage (LV) side of the transformer and the highvoltage (HV) side is connected to the grid. The dc-link voltages of the inverters are maintained constant and modulation indices are controlled to achieve the required objective. The proposed control scheme is derived from the ac side of the equivalent circuit which is shown in Fig. 3. In the figure, \(v^*_d, v^*_q\), and \(v^*_r\) are the source voltages referred to LV side of the transformer, \(r_d, r_q\), and \(r_c\) are the resistances which represent the losses in the transformer and three inverters, \(L_a, L_b\), and \(L_c\) are leakage inductances of transformer windings, and \(e_{a1}, e_{b1}, e_{c1}, e_{a2}, e_{b2}, e_{c2}\) and \(e_{a3}, e_{b3}, e_{c3}\) are the output voltages of inverters 1, 2, and 3, respectively. \(r_1, r_2, r_3\) are the leakage resistances of dc-link capacitors \(c_1, c_2\) and \(c_3\), respectively. Assuming \(r_a = r_b = r_c = r\), \(L_a = L_b = L_c = L\) and applying KVL on the ac side, the dynamic model can be derived as

\[
\begin{bmatrix}
\frac{dv^*_d}{dt} \\
\frac{dv^*_q}{dt} \\
\frac{dv^*_r}{dt}
\end{bmatrix} = \begin{bmatrix}
r_c & 0 & 0 \\
0 & -r_c & 0 \\
0 & 0 & -r_c
\end{bmatrix} \begin{bmatrix}
v^*_d \\
v^*_q \\
v^*_r
\end{bmatrix} + \begin{bmatrix}
\frac{1}{L} \left(v^*_d - (e_{a1} - e_{a2}) \right) \\
\frac{1}{L} \left(v^*_q - (e_{b1} - e_{b2}) \right) \\
\frac{1}{L} \left(v^*_r - (e_{c1} - e_{c2}) \right)
\end{bmatrix}
\]

(1)

Equation (1) represents the mathematical model of the cascaded two-level inverter-based multilevel STATCOM in the stationary reference frame. This model is transformed to the synchronously rotating reference frame. The \(d\) axes reference voltage components of the converter and are controlled as

\[
e^*_d = -x_1 + \omega L i^*_q + v^*_d
\]

(2)

\[
e^*_q = -x_2 + \omega L i^*_d + v^*_q
\]

(3)

Where \(v^*_d\) is the \(d\)-axis voltage component of the ac source and \(i^*_d, i^*_q\) are \(d, q\)-axes current components of the cascaded inverter, respectively. The synchronously rotating frame is aligned with source voltage vector so that the \(q\)-component of the source voltage \(v^*_q\) is made zero. The control parameters and are controlled as follows:

\[
x_1 = \left(k_{p1} + \frac{k_{i1}}{s} \right) (i^*_d - i^*_q)
\]

(4)

\[
x_2 = \left(k_{p2} + \frac{k_{i2}}{s} \right) (i^*_q - i^*_q)
\]

(5)

The \(d\)-axis reference current \(i^*_d\) is obtained as

\[
i^*_d = \left(k_{p3} + \frac{k_{i3}}{s} \right) \left((v^*_d)_{DC1} + (v^*_d)_{DC2} - (v_{dc1} + v_{dc2}) \right)
\]

(6)

where \(v^*_d)_{DC1}, (v^*_d)_{DC2}, v_{dc1}, v_{dc2}, v_{dc3}\) and \(v_{dc1}, v_{dc2}, v_{dc3}\) are the reference and actual dc-link voltages of inverters 1 and 2, respectively. The \(q\)-axis reference current \(i^*_q\) is obtained either from an outer voltage regulation loop.
when the converter is used in transmission-line voltage support or from the load in case of load compensation.

Fig. 1. Power system and the STATCOM model.

A. Implementation strategy

The control block diagram is shown in Fig. 4. The unit signals $\cos \omega t$ and $\sin \omega t$ are generated from the phase-locked loop (PLL) using three-phase supply voltages. The converter currents are transformed to the synchronous rotating reference frame using the unit signals. The switching frequency ripple in the converter current components is eliminated using a low-pass filter (LPF). From $v_{\text{dc1}}^* + v_{\text{dc2}}^*$ and i_q^* loops, the controller generates d–q axes reference voltages, e_d^* and e_q^* for the cascaded inverter. With these reference voltages, the inverter supplies the desired reactive current and draws required active current to regulate total dc-link voltage $(v_{\text{dc1}}^* + v_{\text{dc2}}^*)$. However, this will not ensure that individual dc-link voltages are controlled at their respective reference values. Hence, additional control is required to regulate individual dc-link voltages of the inverters.

B. DC link balance controller:

The resulting voltage of the cascaded converter can be given as $e_1 \angle \delta$, where $e_1 = \sqrt{e_d^2 + e_q^2}$ and $\delta = \tan^{-1} \left(\frac{e_q^*}{e_d^*} \right)$. The active power transfer between the source and inverter depends on δ and is usually small in the inverters supplying var to the grid. Hence, δ can be assumed to be proportional to e_q. Therefore, the q-axis reference voltage component of inverter-2 e_q^* is derived from the fuzzy logic controller to control the dc-link voltage of inverter-2.

In this paper control is done by the fuzzy logic controller. The control scheme consists of a Fuzzy controller, a limiter, and a three phase sine

Fig. 2. Cascaded two-level inverter-based multilevel STATCOM.

Fig. 3. Equivalent circuit of the cascaded two-level inverter-based multilevel STATCOM.

Fig. 4. Control block diagram.
wave generator for the generation of the internal structure of the control circuit. The control scheme consists of a Fuzzy controller, a limiter, and a three phase sine wave generator for the generation of reference currents and switching signals. The peak value of the reference current is estimated by regulating the DC link voltage. The actual capacitor voltage is compared with a set reference value. The error signal is then processed through a Fuzzy controller, which contributes to the zero steady error in tracking the reference current signal. A fuzzy controller converts a linguistic control strategy into an automatic control strategy, and fuzzy rules are constructed either by expert experience or with a knowledge database. Firstly, the input Error ‘E’ and the change in Error ‘4E’ have been placed with the angular velocity to be used as the input variables of the fuzzy logic controller. Then the output variable of the fuzzy logic controller is presented by the control Current Imax. To convert these numerical variables into linguistic variables, the following seven fuzzy levels or sets are chosen: NB (negative big), NM (negative medium), NS (negative small), ZE (zero), PS (positive small), PM (positive medium), and PB (positive big) as shown in below.

Rule Base: The elements of this rule base table are determined based on the theory that in the transient state, large errors need coarse control, which requires coarse input/output variables, while in the steady state, small errors need fine control, which requires fine input/output variables. Based on this, the elements of the rule table are obtained as shown in below.

The fuzzy logic toolbox is highly impressive in all respects. It makes fuzzy logic an effective tool for the conception and design of intelligent systems. The fuzzy logic toolbox is easy to master and convenient to use. And last, but not least important, it provides a reader friendly and up-to-date introduction to methodology of fuzzy logic and its wide ranging applications.

Fuzzy inference is a method that interprets the values in the input vector and, based on user defined rules, assigns values to the output vector. Using the GUI editors and viewers in the Fuzzy Logic Toolbox, you can build the rules set, define the membership functions, and analyze the behavior of a fuzzy inference system (FIS). The following editors and viewers are provided.

The q-axis reference voltage component of inverter-1 e^*_{q1} is obtained as

$$e^*_{q1} = e^*_{q} - e^*_{q2}$$

(7)

The dc-link voltage of inverter-2 is controlled at 0.366 times the dc-link voltage of inverter-1 [9]. It results in four-level operation in the output voltage
and improves the harmonic spectrum. Expressing dc-link voltages of inverter-1 and inverter-2 in terms of total dc-link voltage, \(V_{dc} \) as

\[
V_{dc1} = 0.732V_{dc} \tag{8}
\]

\[
V_{dc2} = 0.268V_{dc} \tag{9}
\]

Since the dc-link voltages of the two inverters are regulated, the reference d-axis voltage component \(e_d^* \) is divided in between the two inverters in proportion to their respective dc-link voltage as

\[
e_{d1}^* = 0.732e_d^* \tag{10}
\]

\[
e_{d2}^* = 0.268e_d^* \tag{11}
\]

For a given power, if

\[
V_{dc2} < V_{dc2}^2, \quad \delta_2 (\tan^{-1} (\frac{e_{d2}^*}{e_{d2}^*})) \text{ increases and } \delta_1 (= \tan^{-1} (\frac{e_{d1}^*}{e_{d1}^*})) \text{ decreases. Therefore, power transfer to inverter-2 increases, while it decreases for inverter-1. The power transfer to inverter-2 is directly controlled, while for inverter-1, it is controlled indirectly. Therefore, during disturbances, the dc-link voltage of inverter-2 is restored to its reference quickly compared to that of inverter-1. Using } e_{d1}^* \text{ and } e_{d1}^*, \text{ the reference voltages are generated in stationary reference frame for inverter-1 and using } e_{d1}^* \text{ and } e_{d2}^* \text{ for inverter-2. The reference voltages generated for inverter-2 are in phase opposition to that of inverter-1. From the reference voltages, gate signals are generated using the sinusoidal pulse-width modulation (PWM) technique. Since the two inverters’ reference voltages are in phase opposition, the predominant harmonic appears at double the switching frequency.}

C. unbalanced conditions:

Network voltages are unbalanced due to asymmetric faults or unbalanced loads. As a result, negative-sequence voltage appears in the supply voltage. This causes a double supply frequency component in the dc-link voltage of the inverter. This double frequency component injects the third harmonic component in the ac side. Moreover, due to negative-sequence voltage, large negative-sequence current flows through the inverter which may cause the STATCOM to trip. Therefore, during unbalance, the inverter voltages are controlled in such a way that either negative-sequence current flowing into the inverter is eliminated or reduces the unbalance in the grid voltage. In the latter case, STATCOM needs to supply large currents since the interfacing impedance is small. This may lead to tripping of the converter.

The negative-sequence reference voltage components of the inverter \(e_{dn}^* \) and \(e_{qn}^* \) are controlled similar to positive-sequence components in the negative synchronous rotating frame as

\[
e_{dn}^* = -x_3 + (\omega L)i_{qn}' + v_{dn}' \tag{12}
\]

\[
e_{qn}^* = -x_4 (\omega L)i_{dn}' + v_{qn}' \tag{13}
\]

Where \(v_{dn}' \), \(v_{qn}' \) are - axes negative-sequence voltage components of the supply \(i_{dn}' \) and \(i_{qn}' \) are d-q axes negative-sequence current components of the inverter, respectively. The control parameters and are controlled as follows:

\[
x_3 = (K_{p5} + \frac{k_{d6}}{s})(e_{dn}^* - i_{dn}') \tag{14}
\]

\[
x_4 = (K_{p6} + \frac{k_{d6}}{s})(e_{qn}^* - i_{qn}') \tag{15}
\]

The reference values for negative-sequence current components \(i_{dn}^* \) and \(i_{qn}^* \) are set at zero to block negative-sequence current from flowing through the inverter.

IV. SIMULATION RESULTS

The system configuration shown in Fig. 1 is considered for simulation. The simulation study is carried out using MATLAB/ SIMULINK. The system parameters are given.

A. Reactive Power Control

In this case, reactive power is directly injected into the grid by setting the reference reactive current \(i_q^* \) component at a particular value. Initially, \(i_q^* \) is set at 0.5 p.u. At t=2.0 s, \(i_q^* \) is changed to 0.5 p.u. Fig.
two inverters. From the figure, it can be seen that the dc-link voltages of the inverters are regulated at their respective reference values when the STATCOM mode is changed from capacitive to inductive. Moreover, the dc-link voltage of inverter 2 attains its reference value faster compared to that of inverter 1 as discussed in Section II

B. Load Compensation:

In this case, the STATCOM compensates the reactive power of the load. Initially, STATCOM is supplying a current of 0.5 p.u. At t=2.0 s, the load current is increased so that STATCOM supplies its rated current of 1 p.u. Fig. 8(a) shows source voltage and converter current, while Fig. 8(b) shows the dc-link voltages of two inverters. The dc-link voltages are maintained at their respective reference values when the operating conditions are changed.

C. Operation during fault condition:

In this case, a single-phase-to-ground fault is created at t=1.2 s, on the phase of the HV side of the 33/11-kV transformer. The fault is cleared after 200 ms. Fig. 9(a) shows voltages across the LV side of the 33/11-kV transformer. Fig. 9(b) and (c) shows the d-q axes components of negative-sequence current of the converter. These currents are regulated at zero during the fault condition.

VI. Conclusion

DC-link voltage balance is one of the major issues in cascaded inverter-based STATCOMs. In this paper, a simple var compensating scheme is proposed for a cascaded two-level inverter-based multilevel inverter. The scheme ensures regulation of dc-link voltages of inverters at asymmetrical levels and reactive power compensation. By using fuzzy controller accuracy
increases, performance increases. The performance of the scheme is validated by simulation and experimentations under balanced and unbalanced voltage conditions. Further, the cause for instability when there is a change in reference current is investigated. The dynamic model is developed and transfer functions are derived. System behavior is analyzed for various operating conditions. From the analysis, it is inferred that the system is a non minimum phase type, that is, poles of the transfer function always lie on the left half of the s-plane. However, zeros shift to the right half of the s-plane for certain operating conditions. For such a system, oscillatory instability for high controller gains exists.

REFERENCES

